3 research outputs found

    CNN AND LSTM FOR THE CLASSIFICATION OF PARKINSON'S DISEASE BASED ON THE GTCC AND MFCC

    Get PDF
    Parkinson's disease is a recognizable clinical syndrome with a variety of causes and clinical presentations; it represents a rapidly growing neurodegenerative disorder. Since about 90 percent of Parkinson's disease sufferers have some form of early speech impairment, recent studies on tele diagnosis of Parkinson's disease have focused on the recognition of voice impairments from vowel phonations or the subjects' discourse. In this paper, we present a new approach for Parkinson's disease detection from speech sounds that are based on CNN and LSTM and uses two categories of characteristics Mel Frequency Cepstral Coefficients (MFCC) and Gammatone Cepstral Coefficients (GTCC) obtained from noise-removed speech signals with comparative EMD-DWT and DWT-EMD analysis. The proposed model is divided into three stages. In the first step, noise is removed from the signals using the EMD-DWT and DWT-EMD methods. In the second step, the GTCC and MFCC are extracted from the enhanced audio signals. The classification process is carried out in the third step by feeding these features into the LSTM and CNN models, which are designed to define sequential information from the extracted features. The experiments are performed using PC-GITA and Sakar datasets and 10-fold cross validation method, the highest classification accuracy for the Sakar dataset reached 100% for both EMD-DWT-GTCC-CNN and DWT-EMD-GTCC-CNN, and for the PC-GITA dataset, the accuracy is reached 100% for EMD-DWT-GTCC-CNN and 96.55% for DWT-EMD-GTCC-CNN. The results of this study indicate that the characteristics of GTCC are more appropriate and accurate for the assessment of PD than MFCC

    Features selection by genetic algorithm optimization with k-nearest neighbour and learning ensemble to predict Parkinson disease

    Get PDF
    Among the several ways followed for detecting Parkinson's disease, there is the one based on the speech signal, which is a symptom of this disease. In this paper focusing on the signal analysis, a data of voice records has been used. In these records, the patients were asked to utter vowels “a”, “o”, and “u”. Discrete wavelet transforms (DWT) applied to the speech signal to fetch the variable resolution that could hide the most important information about the patients. From the approximation a3 obtained by Daubechies wavelet at the scale 2 level 3, 21 features have been extracted: a linear predictive coding (LPC), energy, zero-crossing rate (ZCR), mel frequency cepstral coefficient (MFCC), and wavelet Shannon entropy. Then for the classification, the K-nearest neighbour (KNN) has been used. The KNN is a type of instance-based learning that can make a decision based on approximated local functions, besides the ensemble learning. However, through the learning process, the choice of the training features can have a significant impact on overall the process. So, here it stands out the role of the genetic algorithm (GA) to select the best training features that give the best accurate classification
    corecore